

Figure 4. Critical density-composition relations of binary systems of PFMCH with isomeric hexanes. Predicted values: (---). Experimental points: (•) 2,2-dimethylbutane; (O) *n*-hexane; (◊) 2-methylpentane; (∇) 2,3-dimethylbutane; (D) 3-methylpentane. $\xi = 0.885$ for all systems.

densitv ß Έ interaction coefficient

Subscripts

1, 2 component 1, 2 С critical

- pseudocritical value for mixture cm
- component i, j 1, 1
- vap vaporization
- differentiation with respect to x, vx, v

Superscripts

- G gas
- liquid L

Literature Cited

- (1) Chun, S. W. Ph.D. Thesis, The Ohio State University, Columbus, Ohio, 1964
- (2) Genco, J. M. Ph.D. Thesis, The Ohio State University, Columbus, Ohio, 1965. Grafstein, D. Anal. Chem. 1954, 26, 523. (3)
- Jordan, L. W.; Kay, W. B. Chem. Eng. Prog., Symp. Ser. 1963, 59, (4) 46.
- (5)
- (6)
- ÌΒÌ
- (9)
- (10)
- 46. Kay, W. B. J. Am. Chem. Soc. **1946**, *68*, 1336. Kay, W. B. J. Phys. Chem. **1964**, *68*, 827. Kay, W. B.; Rambosek, G. M. Ind. Eng. Chem. **1953**, *45*, 221. Kay, W. B.; Donham, W. E. Chem. Eng. Sci. **1955**, *4*, 1. Kuenen, J. P. Philos. Mag. **1895**, *40*, 173. Kuenen, J. P. Philos. Mag. **1897**, *44*, 174. Leland, T. W.; Chappelear, P. S. Ind. Eng. Chem. **1968**, *60*, 15. Reid, R. C.; Sherwood, T. K. "The Properties of Gases and Liquids", 2nd ed. McGraw-Hill. New York **1966** n. 89. (12) ed.; McGraw-Hill: New York, 1966, p 89.
- Rossini, F. D. "Selected Values of Physical and Thermodynamic Prop-(13)erties of Hydrocarbons"; American Petroleum Institute, Carnegle Press: Pittsburgh, 1953,
- Rowlinson, J. S.; Thacker, P. Trans. Faraday Soc. 1957, 53, 1 Rowlinson, J. S.; Thacker, P. Trans. Faraday Soc. 1957, 53, 1.
 Rowlinson, J. S.; Watson, I. D. Chem. Eng. Sci. 1969, 24, 1565.
 Skaates, J. M.; Kay, W. B. Chem. Eng. Sci. 1964, 19, 431.
 Teja, A. S.; Rowlinson, J. S. Chem. Eng. Sci. 1973, 28, 529.
 Teja, A. S.; Kropholler, H. W. Chem. Eng. Sci. 1975, 30, 435.
 Teja, A. S.; AIChE J. 1975, 21, 618.
 Teja, A. S. Ind. Eng. Chem. Fundam. 1979, 18, 435.
 Teja, A. S. Chem. Eng. Sci. 1978, 33, 609.
- (15) (16)
- (17)
- (18)
- (19)
- (20)

Received for review April 28, 1980. Accepted June 30, 1980.

Study of the Critical and Azeotropic Behavior of Binary Mixtures. 2. **PVT-x** Data and Azeotropic States of Perfluoromethylcyclohexane–Isomeric Hexane Systems

Joseph M. Genco,^{†§} Amyn S. Teja,[‡] and Webster B. Kay^{*†}

Department of Chemical Engineering, The Ohio State University, Columbus, Ohio 43210, and Department of Chemical Engineering, University of Delaware, Newark, Delaware 19711

PVT-x data for five binary systems composed of the isomers of hexane with perfluoromethylcyclohexane as the common component are reported in this paper. All of these systems form positive azeotropes which persist in their critical regions. The locus of azeotropic points for each system and its prediction using an extended corresponding states principle is also reported.

Introduction

An investigation of the PVT-x relations of a series of binary systems composed of the isomers of hexane with perfluoromethylcyclohexane (PFMCH) as a common component was undertaken to obtain information on the relative effect of molecular structure on the phase diagrams of such mixtures. These systems were found to form positive azeotropes which persist up to the critical locus curve. The critical loci of PFMCH-isomeric hexane mixtures and their correlation and prediction using an extended corresponding states principle were reported in part 1 of this paper (1). It was found that the critical loci of all these systems exhibit a minimum temperature point which is characteristic of systems which form positive azeotropes in their critical region. It was further shown that the critical loci of PFMCH-isomeric hexane systems could be predicted by the extended corresponding states approach, using only a single adjustable binary interaction coefficient obtained from the correlation of the critical states of PFMCH-n-hexane mixtures.

In this paper, we report the measurements of dew and bubble points as well as azeotropic states of PFMCH-isomeric hexane systems. The predictive capabilities of the extended corre-

[†] The Ohio State University. [‡] University of Delaware. On leave from Loughborough University of Tech-nology, Loughborough LE11 3TU, England. [§] Permanent address: Department of Chemical Engineering, University of Maine,

Orono, Maine 04473.

 Table I.
 Perfluoromethylcyclohexane (1)-n-Hexane (2) Data

	dew point		bubble point		
temp, K	press., bar	vol, cm ³ mol ⁻¹	press., bar	vol, cm ³ mol ⁻¹	
		$x_{1} = 0.8171$			-
478 16	21 364	620.26	21 554	100 65	
474 11	10 6 20	020.20	21.334	499.03	
4/4.11	19.620	908.21	20.507	3/6.01	
468.12	17.693	1137.41	18.774	337.41	
463.04	16.145	1339.56	17.384	317.64	
453.13	13.540	1755.18	14.823	295.80	
443.02	11.240	2239.46	12.543	280.52	
433.08	9.201	2849.55	10.577	266.65	
423.00	7.587	3605.39	8.881	257.08	
403.07	4.912	5727.12	6.154	240.47	
383.07	3.092	9232.89	4.126	228.27	
		x = 0.6602			
472 67	01 071	$x_1 = 0.0003$	22.1.40	126.61	
4/3.0/	21.9/1	605.06	22.148	436.61	
469.12	20.178	866.66	20.690	351.94	
464.10	18.510	1051.94	19.163	321.57	
453.07	15.256	1471.77	16.050	289.17	
443.02	12.764	1889.74	13.619	275.51	
423.00	8.751	2979.20	9.560	250.00	
403.12	5.688	4841.68	6.459	231.31	
383.07	3.432	8141.80	4.257	212.33	
		r = 0.4860			
473 51	23 288	x1 - 0.4000	22 210	502 70	
460 10	23.200	795 40	23.310	302.79	
462.05	10 6 21	/03.42	21.745	330.03	
403.03	19.031	980.33	19.700	303.60	
433.09	10.550	1320.07	16.//8	276.23	
443.02	13.862	1681.91	14.119	254.61	
422.99	9.588	2641.88	9.875	233.79	
403.07	6.318	4330.21	6.700	216.44	
383.02	4.128	6804.37	4.347	210.46	
		$x_1 = 0.3342$			
478.25	24,769	525.35	24,873	417.15	
473.10	22.741	760.95	22 946	308.65	
468.10	20.956	918.54	21 1 70	285 22	
463.04	19.327	1069 16	19 54 5	269.76	
453.09	16 401	1388 47	16 694	248 20	
443.02	13 780	1758 57	14 027	240.20	
472.02	9 5 9 7	2711 47	0 937	216.60	
403 13	6 41 9	A100 17	5.637	210.00	
202.00	4 1 2 2	4133.17	4 2 2 1	203.00	
363.03	4.125	0455.01	4.551	189.19	
		$x_1 = 0.1731$			
489.75	27.258	529.35	27.517	382.30	
484.12	24.833	742.92	25.518	289.24	
478.11	22.540	915.14	23.417	264.54	
473.10	20.795	1055.22	21.745	253.06	
463.04	17.621	1351.93	18.651	232.88	
452.99	14.931	1693.39	15.888	219.85	
443.03	12.556	2086.00	13.497	212.29	
423.00	8 675	2952.99	9475	195.01	
403.07	5 600	5064.97	6 4 5 6	182.24	
383 19	3 547	7949 79	4 255	174 56	
505.12	5.547	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.233	174.50	
		$x_1 = 0.000$			
507.50	30.336	423.84	30.268	330.29	
503.21	28.478	627.46	28.564	281.14	
493.11	24.501	880.92	24.619	241.74	
483.11	21.159	1116.86	21.209	223.58	
473.10	18.084	1410.35	18.256	210.15	
463.04	15.348	1712.72	15.468	199.35	
453.08	12.890	2106.99	13.030	190.50	
443.02	10.833	2544.73	10.951	182.22	
422.99	7.437	3849.80	7.544	170.73	
403.07	4.963	5643.05	4.969	162.60	
383.19	3.137	7867.47	3.161	155.87	

sponding states method are tested further, and the method is used for the calculation of azeotropic loci of binary systems of PFMCH with the isomeric hexanes.

Experimental Section

The experimental details have been reported fully in part 1 and are not repeated here.

Figure 1. Pressure-temperature phase diagram for the PFMCH-*n*-hexane system: (**(()**) critical points of mixtures.

Figure 2. Pressure-composition diagram for the PFMCH-*n*-hexane system: (---) locus of azeotropes; (ϕ) calculated critical locus curve of system.

Results

Results in the Vapor-Liquid Region for the Binary System. The pressure, temperature, and specific volume data for the vapor-liquid region for the five binary systems are presented in Tables I–V. The data cover a range from 383.16 K and a pressure of approximately \sim 3.45 bar to the highest temperature and pressure at which liquid and vapor coexist. Only selected data points are presented in Tables I–V. Detailed results can be found in ref 2.

Rather than present several repetitious $PVT-x_1$ diagrams for each of the five binary systems, we chose the perfluoromethylcyclohexane-*n*-hexane system as a representative sample, and data from Table I were employed to construct *PT*, $P-x_1$ and *TV* diagrams; these diagrams are presented as Figures 1, 2, and 3, respectively.

Azeotropic States. At a given temperature, the azeotropic pressure and composition were determined by using the Gibbs-Konowalow theorem. The theorem states (4), "If in a series of isothermal equilibrium states of a two phase binary system, the composition of the two phases becomes the same, then the pressure must pass through an extreme value." Thus,

Table II. Perfluoromethylcyclohexane-3-Methylpentane Data

	dew point		bubble point	
		vol. cm ³	- <u></u>	vol. cm ³
temp, K	press., bar	moΓ¹	press., bar	mol ⁻¹
		x = 0.7951		
476.66	21.319	685.16	21.734	427.60
473.10	19.903	879.89	20.708	368.09
463.04	16.618	1271.67	17.827	317.40
453.09	13.869	1676.19	15.112	291.98
443.02	11.461	2160.88	12.837	275.54
422.99	7.641	3561.71	9.060	251.70
403.07	4.988	5572.22	6.191	236.31
383.06	3.141	8841.47	4.118	223.97
		$x_1 = 0.5869$		
472.67	22.996	564.78	23.166	428.72
468.10	21.130	803.44	21.569	337.92
463.04	19.372	1006.21	20.101	310.47
453.09	16.299	1346.46	17.086	281.74
443.02	13.600	1745.58	14.453	262.72
422.99	9.116	2899.56	10.199	238.39
403.07	6.136	4477.32	7.013	222.96
383.06	3.858	7164.52	4.687	209.53
		$x_1 = 0.4045$		
474.06	24.502	559.29	24.641	370.73
468.10	22.192	804.52	22.513	301.97
462.57	20.239	979.25	20.657	279.90
453.09	17.327	1269.48	17.724	257.93
443.02	14.611	1615.28	15.053	241.47
423.00	10.149	2516.07	10.633	220.23
403.07	6.846	3950.64	7.314	205.96
383.06	4.435	6151.45	4.918	190.61
		$x_1 = 0.2952$		
478.44	25.709	520.32	25.833	365.10
474.10	23.946	710.03	24.261	300.99
468.10	21.754	889.19	22.132	271.47
463.04	20.121	1026.81	20.529	257.29
453.09	17.057	1325.52	17.462	238.60
443.02	14.405	1662.30	14.791	225.36
422.99	10.021	2594.03	10.419	207.00
403.07	6.792	3934.01	7.165	192.98
383.06	4.404	6185.02	4.722	182.12
		$x_1 = 0.2062$		
484.11	27.132	529.08	27.411	358.26
478.10	24.592	753.10	25.210	283.15
473.14	22.704	889.07	23.441	262.10
463.04	19.297	1173.52	20.140	239.29
453.09	16.374	1470.90	17.172	224.38
443.07	13.794	1833.90	14.584	213.68
403.07	5.002 6.474	2021.34 A13A 21	7 1 1 1	193.33
383.06	4 163	6453 76	4 698	172 37
505.00	4.105	0433.70	4.070	1/2.5/
494 01	29 252	$x_1 = 0.0855$	20 400	310 56
489 11	26 790	687 31	27.407	267 20
483.11	24,399	844 21	25.089	245.97
473.10	20.932	1087.75	21.685	224.91
463.04	17.808	1371.02	18.635	211.19
443.02	12.777	2066.43	13.513	192.73
422.93	8.887	3148.33	9.589	181.42
403.07	5.998	4592.39	6.545	171.13
383.06	3.792	7466.38	4.357	162.33

if the bubble and dew point pressures are plotted against composition at a given temperature and smooth curves are drawn through the data, both curves will exhibit a maximum, for positive azeotropy, at the azeotropic composition.

The method was applied to each system at temperatures from 398.16 K to the critical region by using increments of 5 K. When smooth values of the bubble and dew point data were plotted, as indicated above, two well-defined curves were obtained. For each temperature, the maxima on these curves could reliably be established. It was also observed that both maxima occurred at approximately the same composition. An average of the two values was taken as the experimental azeotropic pressure and

Figure 3. Temperature-volume diagram for PFMCH-n-hexane system.

Figure 4. Composite log P^A vs. log x_1^A diagram of the PFMCH-isomeric hexane systems: (---) critical locus curve; (O)*n*-hexane; (\Box) 3-methylpentane; (\diamond) 2-methylpentane; (∇) 2,3-dimethylbutane; (\bullet) 2,2-dimethylbutane.

composition. The results of these equations are presented in Table VI.

Correlation of the Data

Pressure – Temperature Correlation. A correlation described by Prigogine (4) was applied to the data in Table VI. Prigogine showed that the azeotropic pressure (P^A) can be related to the temperature (T) by the standard vapor pressure equation

$$\log \left(P^{A}\right) = A + B/T \tag{1}$$

where P^A is in bars, T is in K, and A and B are constants. Equation 1 shows that the log of the azeotropic pressure is linear in 1/T. The constants A and B were determined by a leastsquares fit to the data and are presented in Table VII.

Pressure – **Composition Correlation.** The relationship between the azeotropic composition and the pressure is expressed satisfactorily by the equation of Othmer and Ten Eyck (3)

$$\log (P^{A}) = a + b(\log x_{1}^{A})$$
(2)

where x_1 is the mole fraction of PFMCH and P^A the azeotropic pressure. The least-squares constants *a* and *b* for each system are listed in Table VIII.

The azeotropic composition x_1 changes very little with pressure. This results from the fact that the temperature coefficients of the vapor pressure (dP/dT) for PFMCH and the hexanes are approximately the same. It is only when these coefficients are quite different from each other that the composition changes rapidly with the pressure.

 Table III.
 Perfluoromethylcyclohexane-2-Methylpentane Data

Table IV. Perfluoromethylcyclohexane (1)-2,3-Dimethylbutane (2) Data

	dew p	ooint	bu b ble point	
		vol. cm ³		vol. cm ³
temp, K	press., bar	mol ⁻¹	press., bar	mol ⁻¹
		0.0000		
475 10	20.952	$c_1 = 0.7980$	01.460	412.45
4/5.10	20.853	/33.88	21.463	413.45
468.10	18.286	1072.04	19.372	344.43
463.04	16./00	12/5.39	17.950	322.92
453.09	13.855	1699.48	15.341	293.43
443.02	11.394	2212.02	13.048	277.07
423.00	7.632	3609.93	9.192	252.90
403.11	5.039	5596.76	6.331	237.09
383.06	3.107	9063.53	4.204	223.82
	x	$z_1 = 0.6087$		
471.07	22.597	577.14	22.734	457.43
468.10	21.315	777 .89	21.786	361.95
463.04	19.495	980.57	20.143	325.39
453.09	16.382	1339.65	17.206	291.34
443.02	13.581	1764.92	14.573	271.07
422.99	9.105	2918.49	10.297	243.49
403.07	6.105	4548.69	7.023	227.20
383.06	3.773	7477.78	4.615	210.45
		- 0 4104		
470 78	24 094	527 71	24 238	296.91
463.04	21.034	862 50	24.230	208 11
452.00	17 900	1171 40	19 494	290,11
433.09	15.046	1520 49	16,404	200.33
422.00	10.270	1320.40	11 166	247.30
402.07	6 01 9	2373.27	7 701	222,37
403.07	0.910	5650.50	5 1 6 7	200.89
362.98	4.400	0001.19	5.10/	192.28
	x	$x_1 = 0.3077$		
473.73	25.076	532.55	25.208	374.58
469.10	23.237	739.44	23.519	305.35
463.04	21.055	923.11	21,419	276.47
453.09	17.882	1218.06	18.280	252.61
442.98	15.061	1550.50	15.513	236.62
423.00	10.499	2341.76	10.968	213.36
403.07	7.110	3776.26	7.511	199.81
383.06	4.535	5976.62	4.970	186.68
	Y	= 0.2059		
478.67	26.243	547.67	26.392	357.79
474.10	24,310	720.73	24.670	291.92
468.10	22.099	882.65	22.500	264.99
463.04	20.346	1022.87	20 803	251 61
453.09	17 310	1316.63	17 744	233 41
443 02	14.600	1649 94	15.051	220.01
423.00	10142	2554 82	10 636	200.88
403.00	6 8 2 8	2007.02	7 749	186 49
383 04	0.030 <u>1</u> 210	6748 70	1.200	175 22
565.00	7.310	0270.27	7.755	113.23
405.11	x	1 = 0.0913		
487.41	28.324	490.10	28.578	345.59
484.11	26.795	630.98	27.352	287.35
473.05	22.494	926.94	23.322	241.32
463.04	19.160	1192.63	20.075	223.49
443.02	13.684	1854.66	14.645	200.96
423.00	9.531	2854.78	10.446	185.65
403.07	6.411	4227.32	7.230	174.44
383.06	4.122	6447.19	4.819	163.16

Estimation of the Critical Azeotropes. Figure 4 is a plot of log P^A vs. log (x_1^A) for the PFMCH-*n*-hexane system and serves to illustrate the method that was employed to estimate the critical azeotropes. The data in Figure 4 fall very close to a straight line from the lowest to the highest pressures. By the extension of this straight line to the critical locus curve, the critical azeotrope for the system can be approximated. The quantities marked with an asterisk in Table VI represent the critical azeotropes obtained in this manner.

The critical azeotrope must not be confused with the minimum temperature point in the T_c vs. x_1 curve. Thus, in the PFMCH-*n*-hexane system, the critical azeotrope is seen to occur at a mole fraction of 0.464 and not at the minimum critical temperature, where $x_1 = 0.550$.

	dew point		bubble point	
				<u> </u>
		vol, cm ³		vol, cm ³
temp, K	press., bar		press., oar	moi -
		$x_1 = 0.8173$		
477.87	21.547	. 633.61	21.836	490.77
473.10	19.570	920.74	20.563	364.86
463.04	16.201	1353.59	17.727	317.19
453.09	13.695	1704.46	15.164	290.46
443.02	11.294	2193.61	12,930	272.95
423.00	7 600	3570.24	9 1 8 5	250.50
403 11	4 952	5658.05	6 3 5 9	235.05
39310	3 0 5 9	013212	3 5 80	233.03
303.10	5.059	91 52.12	2200	222.07
		$x_1 = 0.5930$		
472.11	23.118	553.57	23.237	425.32
468.10	21.260	786.47	21.989	337.73
463.04	19.443	972.28	20.389	308.13
453.09	16.347	1314.48	17.486	277.66
443.02	13.669	1697.57	14.899	268.27
423.00	9.185	2798.61	10.629	235.69
403.07	5.998	4496.77	7.379	220.03
383.07	3.802	7172.72	4.976	207.70
		0.441.7		
451 50		$x_1 = 0.441/$		
471.72	24.210	512.22	24.289	398.93
468.1	22.735	715.98	23.002	319.78
463.04	20.873	887.73	21.259	291.56
453.09	17.695	1190.17	18.103	264.63
443.02	14.913	1532.68	15.393	245.51
423.00	10.975	2410.94	10.870	222.30
403.07	6.946	3796.65	7.446	208.79
383.06	4.331	6241.12	4.941	197.40
		r = 0.2875		
475 78	25 943	483.47	26.069	335.82
473.10	23.943	612.22	25.081	295.02
463.04	24.009	887 37	21 530	295.05
453.04	18 028	1152 21	18 406	272.77
443.01	15 224	1465 04	15 665	223.72
422.00	10 702	2244 57	11 101	109 40
402.07	7 252	2472 69	7 605	194 27
392.06	1.233	5364.06	5 1 24	176 27
363.00	4./40	3304.90	5.124	1/0.2/
		$x_1 = 0.2030$		
481.31	27.498	490.00	27.629	356.15
478.10	26.091	632.69	26.457	296.18
473.10	24,065	785.50	24.564	269.05
463.04	20.588	1039.52	21.136	243.53
453.09	17.553	1314.37	18,112	225.38
443.02	14.858	1643.96	15.402	213.41
423.00	10.454	2434.98	10.973	196.29
403.07	7 1 2 7	3793 68	7 578	184 38
383.09	4 6 3 9	587915	5 050	73.88
000107			0.000	/ 0100
400 55	00.041	$x_1 = 0.1078$	00 505	001.00
488.77	29.361	468.41	29.597	331.80
484.11	27.230	641.62	27.830	271.16
474.14	23.317	891.97	24.099	236.48
463.05	19.678	1175.26	20.564	217.53
453.07	16.748	1449.75	17.546	205.84
443.02	14.140	1790.57	15.051	196.50
423.00	9.936	2732.23	10.747	182.34
403.07	6.724	4061.59	7.472	171.11
383.06	4.388	6215.12	5.034	161.80

Prediction of Azeotropic Loci

A binary azeotrope is a state in which the pressure, temperature, chemical potentials (or fugacities) of the components, and composition are the same in both liquid and gas. At a given temperature, it is defined by eq 3–5, where the superscripts refer

$$P^{\rm G} = P^{\rm L} \tag{3}$$

$$f_1^{\mathbf{G}} = f_1^{\mathbf{L}} \tag{4}$$

$$f_2^{\mathbf{G}} = f_2^{\mathbf{G}} \tag{5}$$

to the vapor and liquid phases. At any temperature, these three

Table V. Perfluoromethylcyclohexane-2,2-Dimethylbutane Data

Figure 5. Comparison of experimental and predicted *PT* and *T*-*x* relations along the azeotropic loci of binary systems of PFMCH with the isomeric hexanes ($\xi_{12} = 0.885$). Predicted: (---). Experimental data points:

hydrocarbon + PFMCH	PT chart	<i>T-x</i> chart
(0) <i>n</i> -hexane	Α	В
(a) 2,3-dimethylbutane	Α	В
(\diamond) 2-methylpentane	С	D
(•) 2,2-dimethylbutane	С	D
(a) 3-methylpentane	E	F

equations may be solved for the three unknowns V^{G} , V^{L} , and x, provided expressions are available for the pressure and for the fugacity of each component in the mixture.

In the calculations presented below, the equations for the pressure and for the fugacities were obtained by using the extended form of the corresponding states principle with methane as the reference fluid. The extension of the principle to PFMCH and the hexane isomers required only the critical properties and acentric factors of the pure substances as input parameters. The extension to mixtures was achieved via the van der Waals one-fluid model:

$$\mathcal{T}_{\rm cm} \mathcal{V}_{\rm cm} = \sum_{i} \sum_{I} x_i x_j \mathcal{T}_{\rm cij} \mathcal{V}_{\rm cij} \tag{6}$$

$$V_{\rm cm} = \sum_{i} \sum_{j} x_i x_j V_{\rm cij} \tag{7}$$

and the mixing rules

$$T_{\rm cm} = \xi_{\parallel} (T_{\rm c\parallel} T_{\rm c\parallel})^{1/2} \tag{8}$$

$$V_{\rm op} = (V_{\rm off}^{1/3} + V_{\rm off}^{1/3})^3 / 8 \tag{9}$$

where the binary interaction coefficient ξ_{ij} is an adjustable constant which must be obtained from experimental data on the mixture. It has been shown earlier (5) that values of ξ_{μ} calculated from correlations of critical and azeotropic states and saturated liquid densities (6) agree very well with each other, at least for mixtures of the lower molecular weight n-alkanes and CO_2 . It is convincingly demonstrated here that this is also true for PFMCH-isomeric hexane mixtures. The single value of $\xi_{\mu} = 0.885$ used in *all* calculations presented below was obtained from a correlation of the critical states of the PFMCH-n-hexane system. Therefore, there were no adjustable constants used in the calculations reported here. The predicted azeotropic loci shown in Figure 5 were obtained solely from a knowledge of the critical properties and acentric factors of the pure components and the critical locus curve of PFMCH-nhexane mixtures. It is seen that agreement between predicted and experimental values is very good. This agreement could be improved further if the critical locus curve of each binary

		dew point		bubble point				
		·	vol cm ³		vol cm ³			
	temp K	ntess har	mol^{-1}	nress har	mol^{-1}			
_	temp, K	press., bai		press., 0ai				
	$x_1 = 0.8330$							
	477 . 46	21.334	662.67	21.703	476.93			
	471.10	19 . 909	875.87	20.821	380.36			
	463.04	16.316	1323.70	17.698	320.71			
	453.09	13.511	1758.54	15,139	295.14			
	443.02	10.805	2387.43	12.872	278.76			
	423.00	7.473	3678.51	9.107	255.52			
	403.07	4.832	5818.68	6.245	239.75			
	383.04	2.928	9564.68	4,174	227.97			
			0 6525					
	470.10	12 726	$t_1 = 0.0323$	22.057	424 10			
	4/0.10	10 962	333.20	23.037	424.10			
	403.04	19.002	927.00	20.079	204 42			
	455.09	10.014	12/8.10	17.047	204.42			
	443.02	13.755	1081.04	15.221	203.72			
	423.00	9.001	2899.60	10.844	239.05			
	403.07	6.003	4469.29	7.542	224,10			
	383.10	3.686	7349.44	4.989	212.32			
		,	$x_1 = 0.4024$					
	467.51	24.483	550.05	24.676	378.50			
	463.02	22.667	751.04	23.164	313.26			
	453.09	19.209	1058.71	19.810	271.74			
	443.02	16.197	1383.29	16.936	251.22			
	423.00	11.148	2246.97	12.118	226.02			
	403.07	7.382	3625.92	8.427	209.16			
	383.07	4.948	1440.20	5 736	197.79			
			0.0040	0				
	100.00	x ₁	= 0.2943	05 01 0	202.46			
	469.63	25.786	471.14	25,813	383.46			
	463.06	23.175	746.24	23.451	283.83			
	453.06	19.701	1024.75	20.058	252,14			
	443.02	16.752	1310.86	17.118	234.46			
	423.00	11.793	2060.53	12.342	212.86			
	403.07	8.061	3204.06	8.561	197.70			
	383.09	5.309	4953.15	5.782	186.53			
		:	$x_{.} = 0.2056$					
	473.10	27.018	491.50	27.138	365.25			
	468.10	24.942	686.67	25.315	285.82			
	463.04	23.095	822.21	23.551	266.03			
	453.09	19.698	1086 10	20 233	239 16			
	443.02	16.707	1382.52	17.284	222.92			
	422.99	11 721	2144 62	12 375	204 60			
	403.07	8 1 5 2	3273.07	8 708	189.83			
	382.24	5 346	4971 73	5 816	176 10			
	002.21	0.510	10/11/10	0.010	1/0.10			
	401.05		$x_1 = 0.0848$					
	481.05	28.926	501.73	29.080	321.84			
	478.10	27.607	603.28	27.885	283.21			
	473.1	25.690	734.85	25.993	256.49			
	463.06	22.035	990.06	22.367	230.53			
	453.11	18.779	1230.89	19.240	215.32			
	443.02	15.917	1550.74	16.443	205.17			
	422.99	11.246	2357.04	11.749	189.14			

mixture were correlated individually, or if all critical and azeotropic states were correlated simultaneously. It is not the purpose of this study to obtain an "optimum" value of the binary interaction coefficient ξ_{ij} . The calculations were carried out to test the corresponding states approach on the PFMCH–isomeric hexane systems and to look at its predictive capabilities. It is obvious that both of these objectives have been met. It has been shown further that the binary interaction coefficient ξ_{ij} is a property of the forces between molecules in a mixture and its value calculated from one property can be used to predict another (related) property. Further details of the method for the calculation of azeotropic states and of the corresponding states method are given elsewhere (6, 7).

Glossary

Α,	В	constants
я	h	constants

a, b constant f fugacity

Table VI.	Azeotropic PT-x	A Dataa
-----------	-----------------	---------

Т, К	P, bar	x ₁ ^A	Т, К	P, bar	x _i A
Perfluorom	ethylcyclohexane-	n-Hexane	Perfluoromethy	lcyclohexane-2-M	ethylpentane
398.16	5.954	0.405	433.16	13.032	0.377
403.16	6.612	0.415	438.16	14.202	0.379
408.16	7.318	0.411	443.16	15.449	0.381
413.16	8.101	0.416	448.16	16.793	0.384
418.16	8.878	0.419	453.16	18.246	0.386
423.16	9.828	0.427	458.16	19.828	0.389
428.16	10.810	0.428	463.16	21.450	0.390
433.16	11.798	0.433	468.16	23.199	0.395
438.16	12.897	0.436	471.36*	24.339*	0.399*
443.16	14.084	0.440			
448.16	15.467	0.446	Periluoromethylc	cionexane-2,3-D	
453.16	16.752	0.448	398.16	0.780	0.289
458.16	18.255	0.451	403.16	/.488	0.293
463.16	19.771	0.455	408.16	8.272	0.300
468.16	21.408	0.457	413.16	9.116	0.301
473.16	23,232	0.463	418.16	9.993	0.304
473.46*	23.273*	0.464*	423.16	10.936	0.308
	20.270		428.16	11.980	0.310
Perfluoromethy	lcyclohexane-3-M	ethylpentane	433.16	13,101	0.318
398.16	6.422	0.384	438.16	14.267	0.320
403.16	7.106	0.386	443.16	15.504	0.325
408.16	7.859	0.387	448.16	16.832	0.327
413.16	8.672	0.389	453.16	18.269	0.330
418.16	9.519	0.395	458.16	19.837	0.333
423.16	10.430	0.392	463.16	21.445	0.338
428.16	11.443	0.394	468.16	23.217	0.343
433.16	12.529	0.395	473.86*	25.279*	0 348*
438.16	13.665	0.396	Perfluoromethyley	clohexane-2,2-Di	imethylbutane
443.16	14.871	0.398	398.16	7.652	0.220
448.16	16.163	0 .399	403.16	8,452	0.227
453.16	17.547	0.401	408.16	9.290	0.230
458.16	19.032	0.403	413.16	10.175	0.234
463.16	20.647	0.404	418.16	11.112	0.239
468.16	22.374	0.405	423.16	12.142	0.243
474.36*	24.201*	0.407*	428.16	13.263	0.248
Derfluoromethy	loveloberone_2-M	athulmantana	433.16	14.476	0.252
209.16	6 700		438.16	15.738	0.257
402.16	7 410	0.355	443.16	17.076	0.262
405.10	/.419	0.357	448.16	18 510	0.266
400.10	0.100	0.339	453.16	20.023	0 271
410.10	9.014	0.362	458 16	21 660	0.274
418,10	9,904	0.304	462 16	21.000	0.275
423.10	10.865	0.367	TUJ.10	23.733	0.273
428.16	11.911	0.372	407.20*	20.0637	0.2/9*

^a The asterisks denote critical azeotropes.

Table VII. Azeotropic A and B Constants for a Least-Squares Analysis of Eq 1

	azeotrop		
system	A	В	std dev ^a
PFMCH-n-hexane	4.457 560	-1466.323	0.008 707
PFMCH-2-MP	4.445 572	-1442.199	0.003 733
PFMCH-3-MP	4.438 409	-1446.563	0.003 889
PFMCH-2.2-DMB	4.365 985	-1387.717	0.003 920
PFMCH-2,3-DMB	4.419434	1429.826	0.003 728

^a Standard deviation is the square root of the sum of the squares of of the residuals, divided by the number of data points minus two.

Table VIII. Azeotropic a and b Constants for a Least-Squares Analysis of Eq 2

azeotropic constant					
system	a	Ь	std dev		
PFMCH-n-hexane	4.724130	10.044 05	0.023 45		
PFMCH-2-MP	5.733198	10.836 50	0.015 89		
PFMCH-3-MP	10.404 90	23.100 01	0.031 01		
PFMCH-2.2-DMB	4.143 642	4.980 282	0.014 34		
PFMCH-2,3-DMB	4.782693	7.330 248	0.01844		

Ρ pressure

- R gas constant
- Т thermodynamic temperature

- V volume
- mole fraction x
- density ρ
- ξ binary interaction coefficient

Subscripts

1, 2 component 1, 2

- critical value C
- pseudocritical value for mixture cm
- component i, j i, j

Superscripts

Α azeotropic value

- G gas
- L liquid

Literature Cited

- Genco, J. M.; Teja, A. S.; Kay, W. B. J. Chem. Eng. Data, preceding paper in this issue.
 Genco, J. M. Ph.D. Thesis, The Ohio State University, Columbus, OH, 1965.
 E. Tan Euclid E. H. Tad. Eng. Chem. 1949. 41, 2007.
- 1965.
 Othmer, D. F.; Ten Eyck, E. H. Ind. Eng. Chem. 1949, 41, 2897.
 (4) Prigogine, I.; Defay, R. "Chemical Thermodynamics"; Longmans, Green and Co.: New York, 1954; p 282.
 (5) Teja, A. S. Chem. Eng. Sci. 1978, 33, 609.
 (6) Teja, A. S. AIChE J. 1975, 21, 618.
 (7) Teja, A. S.; Rowlinson, J. S. Chem. Eng. Sci. 1973, 28, 528.

Received for review April 26, 1980. Accepted June 30, 1980.